PMBus 1.3 Agenda

• Introduction
 – PMBus 1.3 Spec Working Group Charter

• PMBus 1.3 Overview
 – Section I & II (Key changes from specification 1.2)
 – Section III (AVS)

• Timeline

• Call to Action
SMIF/PMBus Organization

• **SMIF** (*System Management Interface Forum*)
 – Supports advancement of a technology base that promotes Power Management and System Technologies implementations
 – Promotes Worldwide inter-operability
PMBus Spec Working Group Charter

IS
- Initiated at the request of customers (Nov 2012)
- Closed group composed mainly of Power Management solution providers that actively participate
- Operating under a charter approved by the PMBus Board of Directors

IS NOT
- Application Profile Committee
- Open Forum initially
Working Group Members

<table>
<thead>
<tr>
<th>Analog Devices</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Power Labs</td>
<td></td>
</tr>
<tr>
<td>Emerson Network Power</td>
<td></td>
</tr>
<tr>
<td>Exar</td>
<td></td>
</tr>
<tr>
<td>International Rectifier</td>
<td></td>
</tr>
<tr>
<td>Intersil</td>
<td></td>
</tr>
<tr>
<td>Linear Technology</td>
<td></td>
</tr>
<tr>
<td>Maxim Integrated</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td></td>
</tr>
</tbody>
</table>
PMBus 1.3 Goals

• **Background**
 – PMBus 1.2 is becoming the standard for intelligent power management
 – Clear use models and values are emerging

• **Goal**
 – Improve upon PMBus 1.2 to address industry use models and values, e.g.
 • Increase Bus throughput as devices increase
 • Address Bus latency for sequencing and fault handling
 • Add Adaptive Voltage Scaling for ASIC, FPGA and processor loads
Target Audience & Disclaimer

• **Target Audience**
 – FPGA, ASIC, SoC, Core processors Manufacturers
 – OEM Systems Implementers
 – Power Management Solution Providers

• **Disclaimer**
 – We are presenting the latest draft of the PMBus 1.3 specification. All information is subject to change
PMBus 1.3 Overview

• PMBus 1.2 vs. PMBus 1.3
• Core Enhancements
 – 1 MHz Bus Speed
 – Floating Point Data Format
 – Relative Voltage Thresholds
 – Global Process Call
 – Adaptive Voltage Scaling
PMBus 1.3 Section I Changes

• Higher Speed Communications
 – 1MHz Clock
 – Mandatory Clock Stretching Support
 – Backwards Compatible

• General Performance Improvement
 – 2.5X Faster Throughput
 – Same Open Drain Signaling
PMBus 1.3 Section I Changes

• **Floating Point**
 – IEEE 754 Industry Standard
 – Half Precision
 – 16 Bit Number

• **Uniform Number System**

• **Negative Numbers**

• **NaN and +/-Inf**

• **Easy Conversion to C Types**
PMBus 1.3 Section I Changes

• **Global Process Call**
 – Extension of SMBus ARA specification
 – Enables intelligent global queries

• **Applications**
 – Device Discovery
 – Prioritized Fault Management
 – Faster Bulk Reads
PMBus 1.3 Section II Changes

• Relative Output Voltage Thresholds
 – Margin Levels
 – Warn Limits
 – Fault Limits
 – Power Good Limits

• Values Specified as a % of Output Voltage

• Changing VOUT_COMMAND Moves All Thresholds
PMBus 1.3 Section III New

• AVSBus for Adaptive Voltage Scaling
 – AVSBus is an interface designed to facilitate and expedite communication between an ASIC, FPGA or processor and a POL control device on a system, for the purpose of adaptive voltage scaling
 – When integrated with PMBus, AVSBus is available for allowing independent control and monitoring of multiple rails within one slave
• **AVSBus for Adaptive Voltage Scaling**

✓ AVSBus is behaviorally and electrically similar to SPI bus without chip select lines.

✓ AVS_MData and AVS_SData are equivalent to MOSI and MISO.

✓ AVS_Clock is equivalent to CLK of the SPI bus.

✓ 50 MHz max bus speed.
PMBus 1.3 Section III New

- **AVSBus Structure** - All frames are 32 bit

- **Write Frame**

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>4</th>
<th>16</th>
<th>3</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0X</td>
<td>X</td>
<td><CmdDataType></td>
<td><Select></td>
<td><CmdData></td>
<td><CRC></td>
<td>All 1's (Idle) or next frame</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>5</th>
<th>21</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>5</th>
<th>21</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td><Prefix></td>
<td>0</td>
<td><StatusResp></td>
<td>All 1's (Idle)</td>
<td><CRC></td>
<td><SlaveAck></td>
<td>0</td>
<td><StatusResp></td>
<td><Reserved></td>
<td><CRC></td>
</tr>
</tbody>
</table>

- **Read Frame**

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>4</th>
<th>16</th>
<th>3</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>11</td>
<td>X</td>
<td><CmdDataType></td>
<td><Select></td>
<td><Reserved></td>
<td><CRC></td>
<td>All 1's (Idle) or next frame</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>5</th>
<th>21</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>5</th>
<th>16</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td><Prefix></td>
<td>0</td>
<td><StatusResp></td>
<td>All 1's (Idle)</td>
<td><CRC></td>
<td><SlaveAck></td>
<td>0</td>
<td><StatusResp></td>
<td><CmdData></td>
<td><Reserved></td>
<td><CRC></td>
</tr>
</tbody>
</table>
PMBus 1.3 Section III New

- **AVSBus Commands**
 - Target Rail Voltage
 - Target Rail Vout Transition Rate (Rising and Falling)
 - Rail Current (read only)
 - Rail Temperature (read only)
 - Reset Rail Voltage to Default Value (write only)
 - Power Mode (Full Power, Maximum Efficiency)
 - AVSBus Status (VGood, OCW, UVW, OTW, OPW)
 - AVSBus Version
PMBus 1.3 Section III New

- **AVSBus Commands**
 - Feedback from the Slave to the Master
 - Asynchronous feedback from the slave by pulling low on the AVS_SData line during idle mode indicating VGood OR an Alert has been generated
 - Every frame start by the master generates a status response from the slave
 - Every ACK by a slave is followed by a status response from the slave
 - Status response
 - VGood – VOUT has reached the target voltage
 - Alert – One of the bits in the AVSBus Status has been set
PMBus 1.3 Section III New

• **PMBus plus AVSBus integration**
 – AVSBus is an application specific protocol to allow a powered device such as an ASIC, FPGA or Processor to control its own voltage for power savings
 – PMBus is an open standard protocol that defines a means of communicating with power conversion and other devices allowing effective configuration and control as well as telemetry data
 – The combination of these protocols in a slave device is an efficient and effective solution for systems containing loads that need to adapt the operating voltage
Timeline – Release of V1.3

• **Today**: Preliminary information session at DPF to disclose
 – Changes to Section I and II
 – Addition of Section III

• **Through December 1\(^{st}\), 2013**:
 – PMBus Spec Working Group soliciting comments from PMBus Adopters
 – Comments closed December 1\(^{st}\)

• **January – March 2014**:
 – Final edits to documents
 – Target Release at APEC 2014 in Fort Worth, TX*

* Target only. Actual release will depend upon the working group working out all technical details.
How to Participate

Step 1 – Be Aware
 – Know what’s coming
 – Understand the impact of AVS to BOTH the power supply/IC community and to the Processor/FPGA/ASIC community

Step 2 – Become a PMBus Adopter (http://pmbus.org/join.html)
 – Access to documentation at the earliest possible dates

Step 3 – Contact us via Lodico (PMBus contracted marketing)
 – Let us know you’re interested
 – Set up discussion with Working Group member to discuss impact

Step 4 – Talk to your suppliers & customers
 – How do they see PMBus shaping the future
Lodico – Marketing for PMBus 1.3

• Lodico
 – The PMBus Spec Working Group has contracted Lodico and Company to assist in the promotion and adoption of the revised PMBus 1.3 specification
 – Lodico will specifically reach out to new potential PMBus members such as processor, ASIC and FPGA companies to spread awareness of PMBus 1.3 addition of Adaptive Voltage Scaling (AVS)
 – Lodico will continue to communicate events and issues regarding the release of PMBus 1.3 to the market until the specification is released

phone: 978.369.6556 or email: isabran@lodicoandco.com
Call to Action

• If you are power supply/power IC supplier
 – Learn how the pending PMBus 1.3 might impact your roadmap
 – Understand that a wide adoption of PMBus 1.3 AVS is able to replace a significant amount of proprietary AVS techniques used in the market today
 – After PMBus 1.3 is ratified, work with your customers on an adoption cycle

• If you are a processor/ASIC/FPGA/digital supplier
 – Be aware of what PMBus 1.3 can do to increase system level performance
 – Work with your power IC suppliers to drive an intercept point between your technology and the PMBus market’s technology