

Version 1.3

Presented by: Mike Jones

Travis Summerlin

PMBus 1.3 Agenda

- Introduction
 - PMBus 1.3 Spec Working Group Charter
- PMBus 1.3 Overview
 - Section I & II (Key changes from specification 1.2)
 - Section III (AVS)
- Timeline
- Call to Action

SMIF/PMBus Organization

- **SMIF** (**S**ystem **M**anagement **I**nterface **F**orum)
 - Supports advancement of a technology base that promotes Power Management and System Technologies implementations
 - Promotes Worldwide inter-operability

PMBus Spec Working Group Charter

IS

- Initiated at the request of customers (Nov 2012)
- Closed group composed mainly of Power
 Management solution providers that actively participate
- Operating under a charter approved by the PMBus Board of Directors

IS NOT

- Application Profile Committee
- Open Forum initially

Working Group Members

Analog Devices	► ANALOG DEVICES
Embedded Power Labs	EMBEDDED POWER LABS
Emerson Network Power	EMERSON. Network Power
Exar	EXAR
International Rectifier	IOR
Intersil	intersil
Linear Technology	TECHNOLOGY
Maxim Integrated	maxim integrated
Texas Instruments	🌵 Texas Instruments

PMBus 1.3 Goals

Background

- PMBus 1.2 is becoming the standard for intelligent power management
- Clear use models and values are emerging

Goal

- Improve upon PMBus 1.2 to address industry use models and values, e.g.
 - Increase Bus throughput as devices increase
 - Address Bus latency for sequencing and fault handling
 - Add Adaptive Voltage Scaling for ASIC, FPGA and processor loads

Target Audience & Disclaimer

Target Audience

- FPGA, ASIC, SoC, Core processors Manufacturers
- OEM Systems Implementers
- Power Management Solution Providers

Disclaimer

 We are presenting the latest draft of the PMBus 1.3 specification. All information is subject to change

PMBus 1.3 Overview

- PMBus 1.2 vs. PMBus 1.3
- Core Enhancements
 - 1 MHz Bus Speed
 - Floating Point Data Format
 - Relative Voltage Thresholds
 - Global Process Call
 - Adaptive Voltage Scaling

PMBus 1.3 Section I Changes

Higher Speed Communications

- 1MHz Clock
- Mandatory Clock Stretching Support
- Backwards Compatible

General Performance Improvement

- 2.5X Faster Throughput
- Same Open Drain Signaling

PMBus 1.3 Section I Changes

- Floating Point
 - IEEE 754 Industry Standard
 - Half Precision
 - 16 Bit Number
- Uniform Number System
- Negative Numbers
- NaN and +/-Inf
- Easy Conversion to C Types

PMBus 1.3 Section I Changes

Global Process Call

- Extension of SMBus ARA specification
- Enables intelligent global queries

Applications

- Device Discovery
- Prioritized Fault Management
- Faster Bulk Reads

PMBus 1.3 Section II Changes

- Relative Output Voltage Thresholds
 - Margin Levels
 - Warn Limits
 - Fault Limits
 - Power Good Limits
- Values Specified as a % of Output Voltage
- Changing VOUT_COMMAND Moves All Thresholds

AVSBus for Adaptive Voltage Scaling

- AVSBus is an interface designed to facilitate and expedite communication between an ASIC, FPGA or processor and a POL control device on a system, for the purpose of adaptive voltage scaling
- When integrated with PMBus, AVSBus is available for allowing independent control and monitoring of multiple rails within one slave

AVSBus for Adaptive Voltage Scaling

- ✓ AVSBus is behaviorally and electrically similar to SPI bus without chip select lines.
- ✓ AVS_MData and AVS_SData are equivalent to MOSI and MISO.
- ✓ AVS_Clock is equivalent to CLK of the SPI bus.
- ✓ 50 MHz max bus speed.

• AVSBus Structure - All frames are 32 bit

Write Frame

2		2	1		4			4	16	3	32					
01	L	ЭХ	Х	<cm< th=""><th>dDat</th><th>aType></th><th><se]< th=""><th>lect></th><th><cmddata></cmddata></th><th><crc></crc></th><th></th><th></th><th>All 1's (Idle</th><th colspan="3">) or next frame</th></se]<></th></cm<>	dDat	aType>	<se]< th=""><th>lect></th><th><cmddata></cmddata></th><th><crc></crc></th><th></th><th></th><th>All 1's (Idle</th><th colspan="3">) or next frame</th></se]<>	lect>	<cmddata></cmddata>	<crc></crc>			All 1's (Idle) or next frame		
	2			1		5			21	3	2	1	5	21	3	
	<prefix></prefix>		. (<s< td=""><td>tatusRe</td><td>sp></td><td>All :</td><td>1's (Idle)</td><td><crc></crc></td><td><slaveack></slaveack></td><td>0</td><td><statusresp></statusresp></td><td><reserved></reserved></td><td><crc></crc></td></s<>	tatusRe	sp>	All :	1's (Idle)	<crc></crc>	<slaveack></slaveack>	0	<statusresp></statusresp>	<reserved></reserved>	<crc></crc>		

Read Frame

_	2	2	1	4			4	16	3	32					
6	ð1	11	Х	<cmddatatype></cmddatatype>			<select></select>	<reserved></reserved>	<crc></crc>	All 1's (Idle) or next frame					
	2			1	5		21	3	2	1	5	16	5	3	
	<prefix></prefix>		,	0	<statusre< td=""><td>sp> All</td><td>1's (Idle)</td><td><crc></crc></td><td><slaveack></slaveack></td><td>0</td><td><statusresp></statusresp></td><td><cmddata></cmddata></td><td><reserved></reserved></td><td><crc></crc></td></statusre<>	sp> All	1's (Idle)	<crc></crc>	<slaveack></slaveack>	0	<statusresp></statusresp>	<cmddata></cmddata>	<reserved></reserved>	<crc></crc>	

AVSBus Commands

- Target Rail Voltage
- Target Rail Vout Transition Rate (Rising and Falling)
- Rail Current (read only)
- Rail Temperature (read only)
- Reset Rail Voltage to Default Value (write only)
- Power Mode (Full Power, Maximum Efficiency)
- AVSBus Status (VGood, OCW, UVW, OTW, OPW)
- AVSBus Version

AVSBus Commands

- Feedback from the Slave to the Master
 - Asynchronous feedback from the slave by pulling low on the AVS_SData line during idle mode indicating VGood OR an Alert has been generated
 - Every frame start by the master generates a status response from the slave
 - Every ACK by a slave is followed by a status response from the slave
- Status response
 - VGood VOUT has reached the target voltage
 - Alert One of the bits in the AVSBus Status has been set

PMBus plus AVSBus integration

- AVSBus is an application specific protocol to allow a powered device such as an ASIC, FPGA or Processor to control its own voltage for power savings
- PMBus is an open standard protocol that defines a means of communicating with power conversion and other devices allowing effective configuration and control as well as telemetry data
- The combination of these protocols in a slave device is an efficient and effective solution for systems containing loads that need to adapt the operating voltage

Timeline – Release of V1.3

- Today: Preliminary information session at DPF to disclose
 - Changes to Section I and II
 - Addition of Section III
- Through December 1st, 2013:
 - PMBus Spec Working Group soliciting comments from PMBus Adopters
 - Comments closed December 1st
- January March 2014:
 - Final edits to documents
 - Target Release at APEC 2014 in Fort Worth, TX*

^{*} Target only. Actual release will depend upon the working group working out all technical details.

How to Participate

Step 1 – Be Aware

- Know what's coming
- Understand the impact of AVS to BOTH the power supply/IC community and to the Processor/FPGA/ASIC community

Step 2 – Become a PMBus Adopter (http://pmbus.org/join.html)

Access to documentation at the earliest possible dates

Step 3 – Contact us via <u>Lodico</u> (PMBus contracted marketing)

- Let us know you're interested
- Set up discussion with Working Group member to discuss impact

Step 4 – Talk to your suppliers & customers

How do they see PMBus shaping the future

Lodico – Marketing for PMBus 1.3

Lodico

- The PMBus Spec Working Group has contracted Lodico and Company to assist in the promotion and adoption of the revised PMBus 1.3 specification
- Lodico will specifically reach out to new potential PMBus members such as processor, ASIC and FPGA companies to spread awareness of PMBus 1.3 addition of Adaptive Voltage Scaling (AVS)
- Lodico will continue to communicate events and issues regarding the release of PMBus 1.3 to the market until the specification is released

phone: 978.369.6556 or email: isabran@lodicoandco.com

Call to Action

If you are power supply/power IC supplier

- Learn how the pending PMBus 1.3 might impact your roadmap
- Understand that a wide adoption of PMBus 1.3 AVS is able to replace a significant amount of proprietary AVS techniques used in the market today
- After PMBus 1.3 is ratified, work with your customers on an adoption cycle

If you are a processor/ASIC/FPGA/digital supplier

- Be aware of what PMBus 1.3 can do to increase system level performance
- Work with your power IC suppliers to drive an intercept point between your technology and the PMBus market's technology